آموزشیى

اثبـات يـكـفــرمول به روشهاى متفاوت

ابتدا با طرح يك مسئله شروع مى كنيم. مجموع زير روش اول

مشابه آنچֶه در بالا گفته شد، عمل مى كنییم. فرض كنيم مجموع موردنظر برابر S است؛

يعنى:
$S=1+r+r+\ldots+N$
حال مىتوان مجموع بالا را بهصورت زير نوشت:

$$
\mathrm{S}=(\mathrm{N}+1-\mathrm{N})+(\mathrm{N}+1-(\mathrm{N}-1))
$$

$$
+(N+1-(N-r))+\ldots+(N+1-1)
$$

بعد از مرتب كردن جملات بالا داريم:

$$
\begin{aligned}
S= & \underbrace{((\mathrm{N}+1)+(\mathrm{N}+1)+\ldots+(\mathrm{N}+1))}_{\mathrm{N}} \\
& -(1+r+\ldots+(\mathrm{N}-1)+\mathrm{N}) \\
\rightarrow & \mathrm{S}=(\mathrm{N} \times(\mathrm{N}+1))-\mathrm{S} \\
\rightarrow & r \mathrm{~S}=\mathrm{N}(\mathrm{~N}+1) \\
\rightarrow & \mathrm{S}=\frac{\mathrm{N}(\mathrm{~N}+1)}{r}
\end{aligned}
$$

روش دوم
حال مى خواهيم به يكى روش هندســى بسيار زيبا فرمــول بالا را ثابت كنـيم. ابتدا بهجاى عدد N يك عدد بسيار كوچگ مثلا ه میى گذاريم تا روش اثبات به خوبى ملموس شود. بنابراين مى خواهيم ثابت كنيم: $1+r+r+r+\Delta=\frac{\Delta \times \varepsilon}{r}$

به شكل ا توجه كنيد.
را بهدست آوريد:
$1+\gamma+r+\ldots+1000$
مسـئله كاملاً واضح اسـت. مى خواهيم اعداد ا تا
 مجمــوع بالا اين اســت كـــه از عدد ا شـــروع كنيهم و يكى يكى اعداد را جمــع كنيهم (راهحلى كه به ذهن انـ هر كسى مىرســد). اما اين كار اصلا جالب نيست و علاوه بــر آن به زمان زيادى نيــاز دارد. بنابراين بايد به دنبال راهحلــى هوشــمندانه و البته زيبا باشـــيم. فرض كنيم مجموع برابر S است؛ يعنى:
$S=1+r+r+\ldots+1000$
حال مىتوان مجموع بالا را بهصورت زير نوشت:
$S=(1001-1000)+(1001-999)+(1001-991)$ $+\ldots+(1001-1)$
بعد از مرتب كردن جملات داريم:

$$
\begin{aligned}
S= & \underbrace{(1001+1.001+\ldots+1001)}_{1.0} \\
& -(1+r+r+\ldots+991+999+1000) \\
\rightarrow & S=(1000 \times 1001)-S \\
\rightarrow & r S=1000 \times 1001 \\
\rightarrow & S=\frac{1000 \times 1001}{r}
\end{aligned}
$$

اكنون با اســتفاده از راهحـــل بالا مىتوان به فرمول

$$
1+r+r+\ldots+N=\frac{N(N+1)}{r}
$$

كلى زير دست يافت:

در ادامه به روشهـــاى متفاوت فرمول بالا را اثبات مى كنيم.

كيوانعباسزادهاسكششهرى
دانشگاه صنعتى شريف
دانشكده علوم رياضى

در شـكل 「 در رديف اول ا مربع، در رديف دوم
مربع، در رديف سوم آخــر (رديف N N N مربع وجود دارد. در وا واقع از بالا به چايين كه مى آييه، تعداد مربعها در هر رديف يك واحد
 rّ برابر است با:
$1+\zeta+\mu+\ldots+N$
تعــداد مربعهــاى كمررنــگ را بـــه روش ديگــرى
مى شماريم. شكل r را به شكل

تعداد مربعهاى كمرنگَ در شكل ا برابر
 Y مربع و بههمين ترتيـبـ در رديف پنجمم ه مربع واقع
است. حال تعداد اين مربعها را به روش ديگرى بـر بهدست مىآوريم. شكل ا را به شكل اي تبديل مى كنيهم.

 كمرنگَ با تعداد مربعهاى پررنگَ برابر است. پس تعداد

$$
\frac{\Delta \times 9}{r} \quad \text { مربعهاى كمرنگَ برابر است با: }
$$

بنابراين تعــداد مربعهاى كمرنگً از يك طرف برابر
است با: $\frac{\Delta \times я}{r}$ با نتيجه مى گيريم:
 درست اســت. در نتيجه حكم براى تمام اعداد طبيعى دی دي N

روش چههارم در اينجــا ابتدا اتحادى بســـيار زيبــا و كاربردى از از تر كيبيات را اثبات مى كنيم: اتحاد چحوشــى - چحى: فرض كنيد k و N دو عدد طبيعى هستند. آن گاه داريه:
$\binom{\mathrm{k}}{\mathrm{k}}+\binom{\mathrm{k}+\mathrm{t}}{\mathrm{k}}+\ldots+\binom{\mathrm{N}}{\mathrm{k}}=\binom{\mathrm{N}+\mathrm{t}}{\mathrm{k}+\mathrm{I}}$

اثبات: از »اتحاد پاسكال<< استفاده مى كنيم:
$\binom{m}{k}=\binom{m+1}{k+1}-\binom{m}{k+1}$
بنابراين داريم:

$$
\begin{aligned}
\binom{\mathrm{k}}{\mathrm{k}}+\binom{\mathrm{k}+1}{\mathrm{k}}+\ldots+\binom{\mathrm{N}}{\mathrm{k}} & =\sum_{\mathrm{m}=\mathrm{k}}^{\mathrm{N}}\binom{\mathrm{~m}}{\mathrm{k}} \\
& =\sum_{\mathrm{m}=\mathrm{k}}^{\mathrm{N}}\binom{\mathrm{~m}+1}{\mathrm{k}+1}-\binom{\mathrm{m}}{\mathrm{k}+1}
\end{aligned}
$$

حال طبق قاعدءٔ ادغام (تلسكوپى) داريهم:
$\sum_{m=k}^{N}\binom{m+1}{k+1}-\binom{m}{k+1}=\binom{N+1}{k+1}-\binom{k}{k+1}$

$$
=\binom{\mathrm{N}+1}{\mathrm{k}+1}
$$

در نتيجه اتحاد چوشــى - چچى ثابت مى شود. البته اتحاد چوشى ـ چچى اثباتهاى گوناگونى دارد كه میت آنها را در كتابهاى تر كيبيات يافت.
حال در اتحاد چوشى ـ چیى قرار دهيد k=1. صورت داريم:
$\binom{1}{1}+\binom{1+1}{1}+\ldots+\binom{\mathrm{N}}{1}=\binom{\mathrm{N}+1}{1+1}$
$\rightarrow\binom{1}{1}+\binom{r}{1}+\ldots+\binom{\mathrm{N}}{1}=\binom{\mathrm{N}+1}{r}$
$\rightarrow I+r+r+\ldots+N=\frac{N(N+1)}{r}$

شكل
تعــداد كل مربعها، چه پررنگت و چـــه كمرنگگ، در

 يس تعداد مربعهاى كمرنگَ برابر است با:

بنابر ايــنـن تعداد مربعهاى كمرنگً از يكـ طرف برابر
竍 $1+r+r+\ldots+N$ نتيجه مى گيريم:
$1+r+r+\ldots+N=\frac{N(N+1)}{r}$
روش سوم
مى خواهيم حكم زير را ثابت كنيم:
$P(N): 1+r+r+\ldots+N=\frac{N(N+1)}{r}$
با اســتقرا روى عدد N حكم بالا را اثبات مى كنيم.
حكم به ازاى N=1 درســت اســت زيرا
N-1 برقرار اســت. حال فرض كنيــم حكمم براى P() برقرار است يعنى داريم:
$P(N-1): 1+r+r+\ldots+(N-1)=\frac{N(N-1)}{r}$
اكنون حكـــم را براى عدد N N اثبات مى كـنيه. يعنى ثابت مى كنيم P(N) برقرار است. داريم:
$1+r+r+\ldots+N=(1+r+r+\ldots+(N-1))+N$

$$
=\frac{\mathrm{N}(\mathrm{~N}-1)}{r}+\mathrm{N}
$$

$$
=\frac{N(N-1)+r N}{r}
$$

$$
=\frac{N^{r}+N}{r}
$$

$$
=\frac{N(N+1)}{r}
$$

